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This paper considers smeared continuum damage mechanics based on the equivalent elliptical 
crack representation of a local damage. This approach provides a means of utilizing the crack 
energies derived in fracture mechanics, and of  identifying the local damage state from local stress 
and strain information. The strain energy equivalence principle is used to derive the effective 
continuum elastic properties of a damaged solid in terms of  the undamaged elastic properties 
and a scalar damage variable. The scalar damage variable is used to develop a consistent damage 
evolution equation. The combination of representing local damage as an equivalent elliptical 
crack, the determination of effective elastic properties using a strain energy equivalence princi- 
ple, and a consistent damage evolution equation yields a simple, yet powerful local approach for 

continuum damage analysis 
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1. Introduction 

In the half-century since the end of World War 
I1, numerous approaches to accurately predict the 

remaining operational life of a mechanical system 
have appeared in the literature associated with 
various fields, including physics, applied math- 
ematics, material sciences and engineering, frac- 
ture mechanics, and damage mechanics. 

A material failure process is often assumed to 
involve a general degradation of elastic properties 
due to the highly localized nucleation and growth 
of microdefects (i. e., microcracks and mi- 
crovoids) and their ultimate coalescence into 
macrodef,~cts. The process and result of  these 
irreversible, energy dissipating, microstructural 
rearrangements is often called damage. Because of 
the complex nature of damage, there is no general 
agreement regarding the definition of damage 
variable(s). As Krajcinovic and Mastilovic 
(1995) discussed, selection of a damage variable 
is largely a matter of taste and convenience, and 
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often has no obvious physical basis. Despite the 
non-uniqueness of damage definitions, much 
research has addressed the two major subjects of 
damage mechanics: the constitutive equations of  
damaged materials, and damage evolution laws. 
Extensive treatments of continuum damage 
mechanics can be found in the references by 
Krajcinovic (1989) and Lemaitre (1992). Cur- 
rently existing damage mechanics theories for 
initially isotropic materials can be classified into 
four categories. The first category that permits 
isotropic behavior of  damaged material, while 
using a scalar damage variable, includes the the- 
ories by Kachanov (1958), Rabotnov (1969), 
Leckie and Hayhurst (1977), Lemaitre (1985, 
1986, 1992), Simo and Ju (1987), Fotiu et aL 

(1991), and others. The second category that 
permits isotropic behavior using tensor (or 
vector) variables includes Davison and Stevens 
(1973), M urakami and Ohno (1981), and others. 
The third category that permits anisotropic behav- 
ior using tensor (or vector) damage variables 
includes Krajcinovic and Fonseca (1981), Kraj- 
cinovic (1985, 1989), Lubarda et al. (1994), and 
others. To the author's knowledge, there have 
been no theories in the fourth category that permit 
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anisotropic behavior of  damaged material using a 

scalar damage variable. It is interesting to con- 

clude in advance that the damage theory 

introduced in this paper falls under the fourth 

category. Very recently the continuum damage 

theory for the initially anisotropic materials has 

been developed by the author (Lee, 1997). 

The constitutive equations of  damaged material 

can be formulated using micromechanical and /o r  

phenomenological approaches. The microme- 

chanical modeling process leads to a one- to-one  

correspondence between a discontinuous field on 

an inhomogeneous mesoscale and an effective 

continuous field on the homogenous macroscale. 

The homogenization (averaging) of the mesos- 

tructural field of defects within a representative 

volume element (RVE) into a macrofield of the 

effective continuum corresponds to microme- 

chanical modeling (e. g., Sumarac and Kraj- 

cinovic(1987)).  Despite clarity and a well-  

defined relationship with physical phenomena, it 

may be impractical or impossible to accurately 

realize the stochastic defects within a RVE, espe- 

cially during the phases of crack generation and 

growth. In contrast to micromechanical models, 

phenomenological models do not consider the 

micro-detai ls  of material response, but describe 

damage indirectly by introducing internal (or 

hidden) variables. This has caused some confu- 

sion and spawned more extensive, substantially 

different, models of  the same phenomena. Thus, 

to provide a scientific basis for theories of contin- 

uum damage mechanics, the irreversible ther- 

modynamics has also been used (Murakami and 

Ohno, 1981; Krajcinovic, 1985; Lemaitre, 1985; 

Simo and Ju, 1987; Fotiu, et al., 1991). 

For  damage evolution equations, the Kachanov 

equation (Kachanov, 1958) was the first of its 

kind. In the Kachanov equation, a scalar damage 

variable is defined as O ~ D ~ I  so that D = O  

corresponds to the undamaged state, while D =  1 

is equivalent to complete local rupture of the 

material. Historically the Kachanov equation 

provided a basis for Rabotnov's  effective stress 

concept (1969) and later for Lemaitre and 

Chaboche's effective stiffness concept (1985). 

Following the transition of damage interpreta- 

tion, many researchers have focused on generaliz- 

ing the one-dimensional  constitutive equation of 

a damaged material to anisotropic damage states 

induced by a three-dimensional distribution of 

defects. Despite numerous developments, the loss 

of physical insight, the complexity of mathemati- 

cal formulation, and the practical difficulties of 

measuring damage parameters restrict the applica- 

bility of many damage definitions available in the 

literature. Hence, the appropriate definition of 

damage variable (s) and the development of corre- 

sponding evolution equations and constitutive 

equations still seem to be open issues. 

A Theory of Smeared Continuum Damage Mechanics 

In the literature, the constitutive equations and 

damage evolution equations are usually devel- 

oped by using the concept of effective stress based 

on the strain equivalence principle (Lemaitre, 

1985) or by using the concept of effective strain 

based on the stress equivalence principle (Simo 

and Ju, 1987). Although the effective stress or 

strain concepts can be converted to an effective 

stiffness concept via the strain or stress equiva- 

lence principles, and vice versa, choosing and 

consistently applying one of these principles may 

be confusing. This is probably why the strain 

equivalence principle is considered as just one 

possible p r inc ip le  in con t inuum damage 

mechanics (Lemaitre, 1992). The possibility of 

developing simpler more straightforward princi- 

ples for use in continuum damage mechanics is a 

reasonable one to explore. 

Thus, the purposes of this paper are: (I) to 

introduce a new theory of continuum damage 

mechanics based on the strain energy equivalence 

principle and the equivalent elliptical microcrack 

representation of a local damage and (2) to 

derive a consistent damage evolution equation 

from the damage variable definition and the crack 

growth law in fracture mechanics. 

2. Features of the Present Continuum 
Damage Theory 

It has been well-recognized that a material 

failure process involves a general degradation of 

effective elastic properties due to highly localized 
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nucleation and growth of microdefects and their 

ultimate coalescence into microdefects. Any local 

damage associated with microdefects always 

locally changes the virgin isotropic properties 

into anisotropic properties. Thus, an observed 

change of elastic properties may indicate the 

existence of local damage. Based on this reason- 

ing, it may be appropriate to assume that a local 

damage state can be equivalently represented by 

the effective anisotropic elastic properties. Then, 

in effect, a microdefect embedded in a solid is 

smeared smoothly onto an equivalent continuum 

having effective anisotropic elastic properties. By 

replacing all local damages in which microdefects 

exist with the effective anisotropic elastic prop- 

erties, conventional stress analysis methods can be 

employed for damage or crack propagation analy- 

sis. This c.oncept of the smeared continuum dam- 

age mode[ seems to be well matched with the so- 

called local approach of fracture introduced by 

Lemaitre (1986). In his local approach, a crack 

edge is considered as a local zone in which 

damage increases until complete local failure of 

the material occurs. This may perhaps be consid- 

ered a continuous version of crack propagation. 

One of the key goals of this paper is to consider 

an efficient continuum local approach to repre- 

sent a damaged material volume cell (MVC) 

containing a single microdefect into an equivalent 

(fictitious) continuum model (ECM) in terms of 

the effective continuum elastic properties and an 

appropriate damage variable. For this purpose, 

the equivalent continuum modeling (ECM) 

approach based on energy equivalence concepts 

(Lee, 1994) will be used. In the structural 

dynamics community, the ECM approach has 

proven capable of capturing the global behavior 

of discrete structures such as periodic lattice space 

structures. At the micro-level,  damaged materials 

with micr,adefects may be regarded as discontinu- 

ous ones. Thus, the continuum representation of 

the mechanical behavior of such a material is 

likely to be in analogy with that of discrete struc- 

tures. In the context of  the ECM approach, 

energy equivalence means that the original struc- 

ture and its equivalent continuum model must 

contain equal kinetic and strain energies when 

both are subject to the same global displacement 

and velocity fields. 

In the development of an equivalent continuum 

model of a damaged material, it is assumed that 

the distances between small microdefects are suffi- 

ciently large so that each defect is affected only by 

the stress distribution around the microdefect. 

Then, a small material volume cell (MVC) that 

contains only a single defect can be isolated. The 

strain on the boundary of the MVC of the 

damaged material is taken to be same as that on 

the ECM. This assumption implies that the macro-  

behavior represented by the ECM is the same as 

that of  the damaged material. From this observa- 

tion, the strain energy equivalence principle 

(SEEP) may be introduced. This principle will 

be used to develop the effective continuum elastic 

properties of the damaged material as well as a 

new definition of damage variable. 

Principle of  Strain Energy Equivalence." When 

the MVC of the damaged material and its ECM 

volume cell have identical global displacements 

on their boundaries, they contain equal strain 

energy. 

The SEEP may provide the effective continuum 

elastic properties of  the ECM by equating the 

strain energy density va contained in the MVC of 

the damaged material to the strain energy density 

v~q in the corresponding ECM. That is, 

veq(C" e)=vd(C,D" e) (1) 

where C represents the elastic stiffness of the 

undamaged material, (7 the effective continuum 

elastic stiffness, D the damage variable consistent 

with (7, and e represents the average strain on the 

boundaries of the MVC and ECM. Thus, com- 

plete constitutive equations for coupled elasticity 

and damage may be obtained by replacing the 

undamaged elastic stiffness with the effective con- 

tinuum elastic stiffness C, calculated from Eq. 
( t ) ,  without redefining or changing the nominal 

stress or strain appearing in the original con- 

stitutive equations. This seems consistent with the 

physical interpretation of  elastic modulus degra- 

dat ion due to reduction in the effective stress- 

transmitting area (Lubarda,  et al. 1994). 

The strain energy density va in Eq. (1) is 
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Fig. 1 

(a) (b) (c) 

Damage modeling 

~ 1 1  Damage Identification 

General features of smeared continuum damage modeling approach: (a) current damaged state of a 
material volume cell (MVC) subject to boundary strain e; (b) equivalent elliptical crack representa- 
tion of a local damage; and (c) effective continuum model (ECM) representation (subject to the 
same boundary strain e)based on strain energy equivalence principle (SEEP). 

dependent of  the damage variable D, which char- 

acterizes the current damage state, i. e., its geome- 

try and growth direction. Unfortunately, for inter- 

nal microdefects, the current damage state is in- 

accessible. Thus, in practice, it is perhaps impos- 

sible to identify the damage state in detail. Hence, 

prediction of damage evolution and fracture using 

the continuum approach based on SEEP requires 

a method by which the damage state can be 

determined at some time. In addition, there 

should be a relation with which current damage 

information can be converted to an effective con- 

tinuum representation. Since it is common for any 

microdefect (or damage in general sense) to 

reduce the effective elastic properties, various 

kinds of microdefects may be considered as the 

equivalent (fictitious) elliptical microcracks 

which result in the same degradation of elastic 

properties�9 In other words, an elliptical micro- 

crack may be considered as a construct which 
relates some general damage to the effective elas- 

tic properties of an ECM. This equivalent ellipti- 

cal microcrack modeling of  local damage may 

bring several benefits. Firstly, for certain elliptical 

microcracks embedded in two- and three-dimen- 

sional elastic solids, the closed-form solutions are 

available from fracture mechanics, and they can 

be used for deriving the strain energy density va 

and thus for determining effective elastic prop- 

erties from Eq. (1). Secondly, the damage state 

(geometry and growth direction) may be char- 

acterized by determining the aspect ratio and 

crack coordinate directions of  an equivalent ellip- 

tical microcrack model. The combination of re- 

presenting local damage as an equivalent ellipti- 

cal microcrack and the determination of effective 

elastic properties using SEEP completes the pres- 

ent smeared continuum damage modeling�9 Figure 

1 illustrates the general features of the present 

smeared continuum damage theory. In the follow- 

ing two sections, the determination of  the effective 

continuum elastic stiffness based on SEEP and 

the determination of  elliptical microcrack charac- 

teristics will be addressed. 

3. Effect ive  Cont inuum Model  and 
a Scalar  Damage  Variable 

To develop a damage model based on SEEP, 

the change of the strain energy storage capacity of 

an elastic body due to the presence of  elliptical 

microdefects is considered�9 A damaged body 

cannot store as much strain energy under a given 

deformation as an undamaged body because of  

the degradation of  elastic moduli. In fracture 

mechanics, the change in strain energy associated 

with forming new surfaces in a body has been 

explored over many decades. The strain energy 



A Theory of Smeared Continuum Damage Mechanics 287 

released in forming a crack is often called the 
crack energy. Crack energies forelliptical through- 
cracks in an infinite two-dimensional isotropic 
elastic body and for elliptical surface cracks em- 
bedded in an infinite three-dimensional isotropic 
elastic body have been calculated by Sih and 
Liebowitz (1967). In order to apply their results 
to a MVC with a microcrack, the microcrack size 
is assumed to be relatively small compared to the 
characteristic dimension of a MVC, so that the 
crack energy in a MVC may be approximated by 
that of an infinite body. This approximation is 
appropriate in that (1) the effects of  neighboring 
cracks decay rapidly with distance (Rice, 1968); 
(2) complete local failure of material is likely to 
occur far before the damage variable D reaches 
the value of ! (Lemaitre, 1985). 

In the ]present work, the undamaged material is 
assumed to behave isotropically. Nucleation and 
growth of damage, however, may cause the equiv- 
alent damaged material to behave anisotropically. 
The stress-strain relation for the ECM of a 
damaged material may be written in terms of  the 
damaged (or effective continuum) elastic stiffness 

Cid, as 

{ r }=[C,~]{ ~} (2) 

The effective continuum elastic stiffness C' .  is 
determined from the undamaged isotropic elastic 
stiffness C .  and the new damage variable D. 

The strain energy density vCq stored in the 
ECM can be written in the form 

v,,, =1{ e }~[ GA{ } (3) 

The strain energy density va that can be stored 
in a MVC of damaged material is obtained by 
subtracting the strain energy ve released by an 
elliptical crack (i. e., crack energy) from the 
strain energy density v0 in undamaged isotropic 
elastic body; that is 

va = Vo-- vc (4) 

In this paper, two different elliptical cracks in 
isotropic elastic bodies are considered. They are 
(I) an elliptical through crack in an two-dimen- 
sional body (simply 2-D crack), and (2) an 
elliptical plane crack embedded in an infinite 

three-dimensional body (or more simply a 3-D 
crack). The origin of a rectangular Cartesian 
coordinate system (crack coordinates) is located 
at the centers of  2-D and 3-D elliptical cracks, 
and the coordinate directions 1 and 2 are aligned 
with the major axis (length 2a) and the minor 
axis (length 2b) of  the crack, respectively. For the 
3-D crack, the coordinate 3 is normal to the plane 
of the crack. 

From Sih and Liebowitz (1967), the average 
strain energy density va which can be stored in a 
MVC (characteristic region of  radius R) of ini- 
tially isotropic elastic solid containing an ellipti- 
cal crack can be readily derived. The strain 
energy densities va originally derived by Sih and 
Liebowitz were in terms of the applied stresses at 
infinite distance from cracks. Since the applied 
stresses at infinity can be replaced with the equiv- 
alent strains at infinity, using the stress-strain 
relations of  the undamaged solid, their results are 
rewritten in terms of  the equivalent strains at 
infinity. 

For a two-dimensional solid containing an 
elliptical through-crack (L e., 2-D crack), the 
strain emegy density is 

l [ ~ ' / r  

va=2-1 ez[. 
[ 71~J 

C . ( 1 - e n D )  Gz(1-elzD) 0 ] 
Gz(1-e12D) Czz(1-ez2D) 0 ]. 

0 0 C~(1-e~D) 

S2 (5) 

)q2 

where D = ( a / R )  2, and the parameters eo are 
defined, for plane stress, as 

e { 2 ~ + { 1 - V ~ k , + [  2t, ~ ~,_,, 
" = \ T = 7 }  \ 1-G9-} \TL-- v-r) '~ 

while, for plane strain, as 



238 Usik Lee 

[ 2V2 ~ ,  k , + ( 2 ( 1 - v ) 2 ) k , 2  
el~ = I x T L ~ -  ] • ( 1 -2v )  1 - 2 v  

ez2=( 2(1-v)Z , 2v 2 z 
1 -2v  ) + ( 1 - 2 v ) k  + ( T z T v - ) k '  \ 

e12=~ ]~/2(1-v) 2] \ ( l - v )  -)k' ~_{. ( 1 - 2 v )  
U 

+(2(1-~)~) k ' ~ ~  1-2v 
e66= ( l - v )  ( l + k ' )  2 (7) 

In the preceding equations, k ' =  b/a represents 
the aspect ratio of  an elliptical crack with values 
0_<k'<_l (same for the 3-D crack case). From 
the definition, k ' = 0  represents a line crack while 
k ' =  1 represents a circular crack. The Ca are the 
isotropic elastic stiffness coefficients of the un- 
damaged solid. They are defined in terms of the 
usual engineering constants (Young's modulus 

E,  shear modulus G, and Poisson's ratio v), for 
plane stress, as 

Cll = C22= 1 _E U 2 

vE 
C12 = 1 - v 2 

C ~ =  G (8) 

and, for plane-strain case, as 

( 1 - v ) E  
Cu=C2z= ( l + v )  ( 1 - 2 v )  

vE 
CI2= ( l + v )  ( 1 - 2 v )  

C66 = G (9) 

Similarly, for a three-dimensional solid 
containing an elliptical plane crack (i. e., 3 - D  
crack), the strain energy density is 

1 / [ e ' ]  ~ 

\te3J 

Cu(1-ellD) Clz(1-el~D) C~2(1-e,3D) ] 
C12 (1 - e~2D) Cn (1 - enD) CI~ (1 - e~3D) [" 

| 
C~ (1 -  e~D) C~2 ( 1 -  e~D) CH (1 - e~D) J 

i / / / 
e~J /rl~J L o o c~ r~ 

(~o) 

where D = ( a / R )  s, and the parameters eo are 
defined as 

2132 

[ 2 ( 1 - v ) 2 ) H ( k  ) 

e12=( 2 v ( 1 - v ) )  

C13:  e23:C33 

( 1 -  v) k2H(k) 
e 4 4 : ( k 2  ~ vk,2) _ vH (k) K(k )  

( 1 - v ) k 2 H ( k )  
ess= (k2_v) + vH (k) K (k) 

k,2 
H(k)  - E(k )  k2=l -k ' 2  (11) 

where, E(k)  and K(k )  are the complete elliptic 
integrals of the first and the second kinds, respec- 
tively. In Eq. (10), the Co are given by Eq. (9). 
Note that es~ is always larger than e44 for any 
Poisson ratio r E 0 . 5  and aspect ratio 0~k '_< l ,  
and they have the same maximum value of  

4 (1-- v)/Tr ( 2 -  v) for circular plane cracks (i.e., 
k ' = l ) .  

From Eqs. (1), (3), (5), and (10), the effective 
continuum elastic stiffness Ci~ of ECM, for both 
2-D and 3-D cracks, are found in simple form as 

Ci j= Cij(1 - eijD) (12) 

In detail, they are given, for the 2-D crack, as 

Cl l=Cl l (1 -euD)  C12=C~2(1-e~2D) 
C22=C22(1-e22D) C6s=C66(1-e66D) (13) 

and, for 3-D crack, as 

CI1 = C11 (1 - euD) C33= C1] (1 - e33D) 
C~2 = C12 (1 - e~2D) C~3 = C12 (1 - e~sD) 
C44 = C66 (1 - e44D) C~5=C66(1-es~D) 
C66 = C66 (14) 

The parameter D, defined as (a/R) 2 for the 2- 
D crack and (a/R) 3 for 3-D crack, will be 
considered as a scalar damage variable through- 
out this paper. This new damage variable D may 
be interpreted as the ratio of the effective 
damaged area (or volume) to the total area (or 
volume) of the MVC, which somewhat differs 
from the damage variable D used in classical 
theories of  damage mechanics (e. g., Lemaitre, 
1992). 

Equation (13), for the 2-D crack, shows that 

Cu = C22 and C~6= ( C u -  C~2)/2 when k ' = l  (i. 
e., circular crack). Thus, a damaged local area of  
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Fig. 2 

(a) Damaged with an elliptical throught (b) Damaged with an elliptical plane-crack 
-crack in 2-D solid in 3-D solid 

Directions of the highest and lowest effective continuum elastic stiffnesses of effective continuum 
model (ECM). 

two-dimensional  solid with a circular through- 

crack retains isotropic behaviors. When k '  is not 

equal to 1, however, the damaged local area 

behaves orthotropically. In this case, the effective 

elastic stiffness Czz is always smaller than Cn. 
This is consistent with results from fracture 

mechanics, namely that the presence of the highest 

stress intensity at the crack edge along the major 

axis effectively reduces the elastic stiffness in the 

minor axis direction, as illustrated in Fig. 2(a).  

In addition, the effective reduction in stiffness 

associated with the crack may well encourage 

crack propagation in a direction nearly aligned 

with the major axis. 

For 3-D cracks, Eq. (14) also shows that a 

damaged local volume of three-dimensional solid 

with an embedded elliptical plane crack behaves 

orthotropically. Also observe that, since e3~ is 

always larger than en or e22, the effective contin- 

uum elastic stiffness C33 in the direction normal 

to the crack surface is the softest, as illustrated in 

Fig. 2(b) .  For  a penny-shaped (circular) crack, 

C44 becomes identical to Cs~ since e44=e~s= 

4(1--v) / rc(2--v) ,  resulting in transversely 
isotropic behavior. 

4. Determination of Current Local 
Damage State 

As can be seen from the effective continuum 

elastic stiffness Co considered in the preceding 

section, local damage associated with an elliptical 

(non-circular)  microcrack within a MVC always 

changes the virgin isotropic properties into orth- 

otropic properties. Thus, an observed change 

from isotropic to orthotropic behavior seems to 

imply the existence of local damage. Since local 

damage is approximately represented as an equiv- 

alent (fictitious) elliptical microcrack, to deter- 

mine the current state of an equivalent elliptical 

microcrack is identical to identifying the local 

damage state. However, unfortunatel3, internal 

damages are inaccessible. Hence, a method by 

which the current state of  elliptical microcrack 

model can be determined is required. 

Since the effective continuum elastic stiffness 

C'o was developed with respect to the crack 

coordinates, the orientation of the crack relative 

to the global structural coordinates must: be deter- 

mined. Once we know the local crack coordinate 

orientations and aspect ratio, the effective contin- 

uum elastic stiffness Co can be determined from 

Eqs. (13) or (14), which can then be transformed 
back to the global structural coordinates and used 

in the next step of an incremental calculation 

process. Thus, the determination of  crack coordi- 

nates and aspect ratio of an equivalent elliptical 

rnicrocrack is essential for the prediction of  dam- 

age propagation. As stress analysis is typically 

conducted in the course of an incremental damage 
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analysis, the current values of stresses and strains 

at a damaged local point are assumed to be 

available. Determination of the crack coordinate 

directions and the crack aspect ratio from this 

information will be considered in this paper. 

The benefit from this analysis comes from the 

assumption of elliptical microcracks, in that the 

associated damage results in locally orthotropic 

material behavior. The orthotropic material prin- 

cipal coordinates may thus be considered to be 

aligned with the crack coordinates. The principal 

stress or principal strain directions are possible 

choices for this orientation because of their biax- 

ial nature. When the opening mode crack growth 

is dominant,  the material principal directions 

(crack coordinates) may be considered as the 

principal stress directions or the orientation that 

minimizes strain energy associated with shear 

deformation, in the sense of the first order approx- 

imation. As shown in Fig. 2, the likely direction 

of  damage propagation is somewhat normal to 

the high stiffness direction, i. e., the "1" direction 

for 2-D crack and the "3" direction for 3-D. 

4.1 Two-dimensional damage 
As discussed in the preceding section, alternate 

approaches may be used to determine the princi- 

pal material directions of the or thot ropic  

damaged material. Assuming that the crack orien- 

tation has been established to within a rotation of 

90 degrees using one of these approaches, the "1" 

and "2" directions remain to be determined. 

Given the stresses and strains referred to the 

global structural coordinate system, the stresses 

and strains in the crack coordinate system ( 1, 

D) may be readily found. Furthermore, the 

material moduli (inverse compliances, 1/S,  ~ and 

1~Six ~) associated with uniaxial stresses in each 
of the orthogonal directions which define the 

crack coordinate system may be determined. If 

these are identical, the material is locally 

isotropic, either having no local damage or circu- 

lar microcracks. Otherwise, the direction associat- 

ed with the highest stiffness corresponds to the 

"1" direction, the major axis of  the elliptical 

crack. 
From Eq. (13), the shear stress-strain relation 

may be used to establish the current aspect ratio 

k'. Assuming that the stresses and strains in the 

crack coordinate system approximate the princi- 

pal stresses and strains, the effective maximum 

shear stress and strain are estimated as 

~-= I 0"1--0*1I% I ~ I - ~ l '  I (15) 
2 ~ =  2 

These yield an estimate for the effective elastic 

shear stiffness 

G * =  -r-r (16) 
9, 

Assuming the computed value of G* is identi- 

cal to the effective continuum shear stiffness of 

Eq. (13), the aspect ratio k' may be computed 

using 

where a = l / ( l + v )  for plane stress and a =  

( l - v )  for plane strain. In general, G * / G < I  
since G* is softened from the virgin value of  G. 

4.2 Three-dimensional damage 
A similar approach is used to address three- 

dimensional damage. Once the crack coordinate 

directions with respect to global coordinates are 

established by an alternate approach, then stresses 

and strains in that coordinate system may be 

calculated and, by considering material moduli 

under uniaxial stress, the "1," "2," and "3" direc- 

tions may be distinguished. The "softest" direc- 

tion under uniaxial normal stress corresponds to 

the normal to the planar crack, the "3" direction. 

The remaining problem is determining how to 

match the two principal material directions I and 

II to the crack coordinates 1 and 2.From Eq. 

(14), the effective elastic shear stiffnesses C44 and 

C55 can be used to distinguish the major axis of 
the elliptical surface crack from the minor axis; 

Clt and C2z are not useful for this purpose since 

they are identical. From Eq. (14), however, tiffs is 

clearly softer than C44 for any 0---k '<-l ,  and both 

are always softer than C~6----G, the stiffness of  the 

virgin material. Thus the "stiffest" direction under 

uniaxial shear stress corresponds to the "1" direc- 

tion. 
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From the stresses and strains in the principal 

material coordinate system, the approximate effec- 

tive maximum or minimum shear stresses and 

strains may be estimated as: 

(o ' , , - o ' . ,  [ L E . -  EI.~_ 
Z'II,IH = :  2 ~*ll,II 1 = -  2 

Z',.I,, = I O"1 -- dI,, I Y,.,,I = J ~'l-- ~UJ_ (18) 
2 2 

The current local effective elastic shear stiffnes- 
ses are now estimated from 

G * -  rmm G,j'~- Z"u. (19) 
:~II,IIl ~'I,[11 

By comparing these estimated effective shear 

stiffnesses, the major axis of the equivalent ellipti- 

cal crack, "1", is seen to correspond to the princi- 

pal stress direction I if Gs%< G4% and vice versa. 

To predict the current aspect ratio k',  the esti- 

mated values of GA and Gs% are assumed to be 

identical to C44 and Css, respectively. Since ess is 

always larger than e44 for any Poisson ratio v.<_ 

0.5 and aspect ratio 0 -<k ' -< l ,  G~<Gg'4 is con- 

firmed. Note that both e44 and e55 have the same 

maximum value of 4 ( 1 - v ) / z c ( 2 - v )  when k ' =  

I, which does not exceed one. Finally, the aspect 

ratio k '  for a given current damage D may be 

readily estimated using 

. C~*a_l( t~4, z~ I-~4*4G5%) (20) es5 (V, ,~') --e44 (V, k ) ~ - ~ - - - ~  

5. C o n s i s t e n t  D a m a g e  E v o l u t i o n  

E q u a t i o n  

In the present paper, the scalar damage variable 

D is defined as 

where n = 2  for 2-D cracks and n = 3  for 3-D 

cracks. Herein the definition of  Eq. (21) will be 

used to develop a consistent damage evolution 

equation. Differentiation of  Eq. (21) with respect 

to time and eliminating the half size of the crack, 

a, yields 

�9 1 

Dc~D[1-~] d (22) 

Since the microcrack size is not available in 

general, the crack growth rate,, should be expres- 

sed in terms of  measurable or predictable quan- 

tities. Fracture mechanics has shown that slow 

crack growth is related to the stress intensity 

factor according to Paris's law (Paris and Er- 

dogan, 1963). That is 

a=AK~ K~= Yanfa (23) 

where A and N are parameters to be determined 

from experiments, and KI is the stress intensity 

factor, which depends on crack length, applied 

stress and a geometrical factor y .  Combining the 

relations (23) through (24) yields 

1 N 
D oc D[ 1-~+~/ann (24) 

In the sense of  Paris's law, the stress an in Eq. 

(24) should be the stress applied normal to the 

mid-plane  between two microcrack surfaces. 

Therefore a,,-:az for two-dimensional  damage, 

and a,,=a3 for three-dimensional damage. A 

damage threshold may be introduced using the 

Heaviside step function H(deq--dTtl), as 

D=I~D[ ,+z~]anH(aeq--aTn) (25) 
where /9 is a material constant to be determined 

from experiments, and arn is a threshold stress 

above which damage will grow. To accommodate 

general three dimensional stress states, the driving 

stress in Eq. (25) has been replaced by aeq, the 

von Mises equivalent stress calculated from the 

deviatoric stresses (Lemaitre, 1992). Alternative- 

ly, the so-called damage equivalence stress may 

be used in place of the von Mises equivalent stress 

(Lemaitre, 1992), defined as 

6=aeq(2(l+v)+3(1_2v)( a, ]z]�89 (26) 
\ Geq ] ] 

where an denotes the hydrostatic stress. In order 

to determine the parameters /3' and d~.n in Eq. 

(25), an experimental approach similar to that of 

Lemaitre (1992) may be followed. It should be 

pointed out that neither the von Mises stress nor 

the damage equivalence stress may be ideal for 

use in this application, as both were developed for 

use with isotropic materials. An alternative for 

future research might involve a new damage 

growth criterion. 
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6. Conclusions 

To accommodate damage associated with gen- 
eral microdefects and to model the progress of 
local fracture in a continuum sense, the concept of 
an equivalent elliptical microcrack representation 
of local damage was introduced and explored. A 
strain energy equivalence principle was developed 
to derive the effective continuum elastic stiffnesses 
of two-dimensional  and three-dimensional 
cracked solids. A scalar damage variable with a 
physical interpretation as a crack area or volume 
fraction was used to develop a consistent damage 
evolution equation. These features may be com- 
bined in an iterative incremental stress analysis to 
provide (Fang et al. 1997) to provide a basis for 
a continuum approach to crack propagation anal- 
ysis. 
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